If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+16x-41=0
a = 8; b = 16; c = -41;
Δ = b2-4ac
Δ = 162-4·8·(-41)
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-28\sqrt{2}}{2*8}=\frac{-16-28\sqrt{2}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+28\sqrt{2}}{2*8}=\frac{-16+28\sqrt{2}}{16} $
| .666x-10=-12 | | 7k(^2)-16k+100=0 | | g-19=-19 | | 2x8=-16 | | 2x-5=3x=5x=5 | | 4(-x=1)=4-4x | | 2x=22=12 | | 6h−5h−h+4h=8 | | 140=m+120 | | ((9/(3x-5))+(1/(x+2))=(4/(x-2)) | | 2+3y=12+2y | | 4m-5-m=5 | | 3x=8-x=4x=8 | | c/20-41=49 | | 10x-(7x-1)=17x-1 | | (p-18)-6=-30 | | 5(x-6)=-30=5x | | t−(−5)=9t−(−5)=9 | | 10x-(7x-1)=3x-1 | | -9m+10m+30=-7m-70 | | 11x-12=75 | | 3x-5(x-3)=-7+3x+12 | | -k=9(k=10) | | -18n=-26 | | 2+1-x=312 | | 2x-142+x+6=180 | | 25*2+10y=285 | | 3/4+3y=6 | | 20s+4=13s-17 | | 5x+3+4x-26=180 | | 13-3p=-5(3+2×5.6 | | 18=6w+4(w+5) |